
Performance for Site Builders

Erik Webb
Senior Technical Consultant

Acquia

Erik Webb
@erikwebb
Senior Technical Consultant
Acquia

Agenda

Introduction
Evaluating Modules
What to Look For
Types of Caching
Configuring Drupal
Performance-related Tools

About Me

Senior Technical Consultant
Focus on Performance,
Infrastructure, and Scalability

5+ years with Drupal
10+ years with LAMP

Red Hat Certified Engineer

Worked previously at Georgia Tech,
IBM

We’re hiring!

Bad Performance Advice

Drupal is slow.
If it runs out of memory, give it more.
Don’t use CCK/Views/Panels/whatever.
If you don’t install X, your site will be slow.
You need multiple servers.

You should have MySQL slave servers.
Varnish will solve all of your problems.*

http://www.diesoft.net/blog/2012/04/10/first-aid-drupal

http://www.diesoft.net/blog/2012/04/10/first-aid-drupal
http://www.diesoft.net/blog/2012/04/10/first-aid-drupal

Evaluating Modules

General Evaluation

1. Supported version(s)
2. Maintainer reputation
3. Total usage
4. Number of open issues
5. Usage change over time

Performance Evaluation

Record baseline before installation
Record usage immediately after installation
Use ongoing memory monitoring to correlate

Use tag “Performance” in issue queue
Typically improvements
Weeds out “My site is slow” issues
Example: http://drupal.org/project/issues/search/views?
issue_tags=Performance

http://drupal.org/project/issues/search/views?issue_tags=Performance
http://drupal.org/project/issues/search/views?issue_tags=Performance
http://drupal.org/project/issues/search/views?issue_tags=Performance
http://drupal.org/project/issues/search/views?issue_tags=Performance

Questions to Ask?

When does this module “run”?
Examples: Login, Content update, Periodically/cron

How does this module scale?
Examples: Per node, per user, per request

What happens if this module fails?
If this module fails, no user can login.
If this module fails, no content will have functioning slideshows.

Does my site care about performance?
Is my site visited entirely by anonymous users?
Is this site internal and low-traffic only?

Do I really need this module?

What to Look For

Identifying the Problem

When does it occur?
All pages? Anonymous and/or authenticated?
Only when saving content? Only when logging in?
Under heavy load? Random times during the day?

When did it start?
Avoid the “it feels faster/slower” problem
Record performance numbers
Maintain release notes (or retain logs)

Who is to blame?
Test against regression between features
Take note of any infrastructure changes

Where Problems Occur

Page building modules
Views and Panels

External web services
User logins
Any 3rd-party integration

Overall complexity
Total number of modules
Views within Panels within Panels within...

Misconfigured components
Default is uncached (for developers)
Understand what is being cached

Managing Performance

Keep records of performance over time
Be analytical, don’t feel
Note any milestones of activity or feature development
Correlate improvements and regressions

Establish a performance metric
Set a level of acceptability
Example: 80% of pages should return in 500ms or render in 3s

Adopt a “Definition of Done” (DoD)
Agile concept - aspects needing satisfaction before completion
Performance is part of QA

Don’t hide behind infrastructure
Slow Drupal is cheap, hardware is not

Types of Caches

Application-level Caching

Move along, nothing to see here.
Not configurable
Should never result in “staleness”
Can only be enhanced by improving backend

Examples: Filter, Menu, Path, Filter (not FORM!)

Component-level Caching

Stores user-facing components
Best speedup for authenticated users

Limited effectiveness without more configuration
Mostly disabled by default

Varying degrees of contents, HTML to serialized objects
Some implementations more effective than others

Examples: Block, Views, Panels

Page-level Caching

Most efficient possible cache
Combine with reverse proxy

Only applicable for anonymous users*
Stored as full HTML
page_cache_fastpath() in D6

Not supported by default cache backend
Bypasses database connection and full bootstrap

Configuring Drupal

Performance page

Use block caching!*
Disabled by node access
Biggest speedup for auth users

Content changes clear
block and page cache

Use “Minimum cache lifetime”
Using a reverse proxy?

Use “Expiration of cached
pages”

Aggregation/compression
only on production

$conf[‘preprocess_css’] = 1;

Fast 404

Added in Drupal 7.9 (currently being backported to D6)
See http://drupal.org/node/76824

Configured in settings.php
Avoid performance hit from
404 errors

http://drupal.org/node/76824
http://drupal.org/node/76824

Other Notes

Understand what Drupal does and does not cache
Helps understand when to troubleshoot

Don’t forget the frontend!
Do not enable “UI modules” on production

Unneeded memory usage
Examples: Field UI, Rules Admin, Views UI

Avoid Database Logging (if you have an alternative)
Examples: Syslog, log4php

Unnoticed PHP errors slow down execution
Increase PHP logging on non-production environments

Performance-related Tools

Drupal Modules

Devel
Execution time and memory usage
Query logging

Boost
Flat file page caching
Designed for shared hosting (infrastructure neutral)

Memcache
Replace database caching with Memcached
In-memory cache, reduces DB load

Drupal Modules

Entity Cache
Drupal 7 only
Stores created objects a.k.a. “entities” (users, nodes, comments, etc.)

Path Cache
Pressflow (D6) or Drupal 7

Block Cache Alter
Maximize effectiveness of block caching
Fine-grained control per block

Drupal Modules

Views Litepager
Slow pagers on Views with large DB tables

Views Content Cache
Store saved Views based on content changes rather than expiration
Example: Clear a View display when a new “Article” node is created

Cache Actions
More generalized approach than Views Content Cache
Works with Drupal cache, CSS/JS aggregation, Views, and Panels
Requires the Rules module

3rd-Party Tools

Web optimization tools
Yahoo! Smush.it
SpriteMe

Web testing tools
WebPagetest.org
Google PageSpeed Online

Browser-based
Firebug/Web Inspector
YSlow!
Google PageSpeed

SaaS products
New Relic
Yottaa

Infrastructure Overview

Apache/Web Server

Handles web requests for PHP
Most common bottleneck

Application should be memory-bound
Least performance considerations

Serves static files alongside PHP
scripts

Scalable: Horizontal and vertical
Alternative: Nginx

PHP/Application “Server”

Usually runs as apart of Apache
(mod_php)

Most common configuration by far
Use Alternative PHP Cache (APC)

Saves interpreted PHP files in memory

Can run as separate process - PHP-
FPM (5.3.3+)

Scale independent of Apache
Better privilege separation

MySQL/Database Server

Sole datastore for Drupal
“Natural” LAMP bottleneck

Hard to solve problem
Most tunable component

Scalable: Vertical
Alternatives: Percona Server and
MariaDB

Caching Server

Two main advantages
Faster access than MySQL
Reduce overall load on MySQL

Significant for authenticated users
Easily configured through Drupal or
PHP
Requires PHP extensions

Scalable: Horizontal and vertical
Examples: Memcached, Redis

file://localhost/Users/ewebb/Downloads/redis-logo.svg
file://localhost/Users/ewebb/Downloads/redis-logo.svg
file://localhost/Users/ewebb/Downloads/redis-logo.svg
file://localhost/Users/ewebb/Downloads/redis-logo.svg

Varnish/Reverse Proxy

Store entire pages for quick
retrieval
Extremely configurable

Load balancing and traffic
management
Varnish Configuration Language
(VCL)

Scalable: Horizontal* and
vertical

Questions?
Where to find me?

erikwebb.net
@erikwebb on Twitter
erikwebb on LinkedIn
erikwebb on SlideShare

